Boa

A Language and Infrastructure for
Analyzing Ultra-Large-Scale Software
Repositories

E
e P
i £ e o
ot A
ey e
TRk . ¥ |
: ."f..?!""‘-".- J
)
)

Robert Dyer Hoan Anh Nguyen Hridesh Rajan Tien N. Nguyen

{rdyer,hoan,hridesh,tien}@iastate.edu

What is actually practiced
Keep doing what works

To find bellcres il Empirical validation

Spot (anti-)patterns

Why mine software repositories?

Learn from the past S Inform the future

= Java.net

SOURCEFORGE.NET®

N
L

launchpad

Consider a task that answers

"What is the average churn rate for Java
projects on SourceForge?"

Note: churn rate is the average number of files changed per revision

mine project
proj foreach

SOURCEFORGE.NET®—metadata project

Calculate

average
churn rate

Calculate
project's
churn rate

Is Java
project?

mine revision
data

Has Yes Access
repository

repository?

|
|
|
|
|
|
|
|
|
|
1
|
|
| Yes
|
|
|
|
|
|
1
|
1
|
|
|
1

A solution in Java...

public

class GetChurnRates {
public static void main(String[] args) { new GetChurnRates () .getRates(args[0]); }
public void getRates (String cachePath) {

for (File file (File[])FileIO.readObjectFromFile (cachePath)) {
String url = getSVNUrl (file);

if (url != null && !url.isEmpty())

System.out.println(url + "," + getChurnRateForProject (url));

private String getSVNUrl (File file) { e‘
String jsonTxt = ""; Q

// read the file contents in

JSONObject json = null ull;

// parse the geoftl g tPthe project

!'jsonP, S| ogramming-1 a eturn "";

("SVNRep turn "";
0 hasJava =
. // is the profec ava project?

(X eturn "";
JSONO: ' svnRep = jsonProj.getJSONObject ("SVNRepository");
if (!svnRep.has("location")) return ""

return svnRep.getString("location") ;

private double getChurnRateForProject (String url) {
double rate = 0;
SVNURL svnUrl;
// connect to SVN and compute churn rate

return rate;

Full program

Uses

Runs
Takes

IELGE
data locally cached!

with

A better solution...

Ep: Project = input;
Erates: output mean[string] of int;

Eexists (i: int; lowercase (p.programming languages[i]) == "Jjava'")
foreach (j: int; p.code_ repositories[j].kind == RepositoryKind.SVN)
foreach (k: int; def(p.code_repositories[]].revisions[k]))

rates[p.id] << len(p.code repositories[]].revisions[k].files)

Full program

needed!
Results in about !

A better solution...

ép: Project = input;
Erates: output mean[string] of int;

éexists (i: int; lowercase (p.programming languages[i]) == "java")
' foreach (j: int; p.code_repositories[]].kind == RepositoryKind.SVN)
foreach (k: int; def(p.code repositories[]j].revisions[k]))
rates[p.id] << len(p.code_ repositories[j].revisions[k].files);

The Boa language and data-
intensive infrastructure

http://boa.cs.iastate.edu/

Research Questions

1. Can we abstract and simplify the software
mining process to make it more accessible
to non-experts?

2. Can software repository mining be done
efficiently at a large scale?

Design goals

m) Easyto use
ms) Scalable and efficient

me) Reproducible research results

Design goals

=) F[asy to use
e Simple language

e No need to know details of
o Software repository mining
o Data parallelization

Design goals

ms) Scalable and efficient
e Study millions of projects

e Results in minutes, not days

Design

goals

ms) Reproducible research results

Replicating MSR:
A study of the potential replicability of papers published in the
Mining Software Repositories Proceedings

Gregorio Robles

GSy

/LibreSoft

iversidad Rey Juan Carlos
Madrid, Spain

Email: gr

Abstract—This paper is the result of reviewing all papers
published in the proceedings of the former International
Workshop on Mining Software Repositories (MSR) (2004-2006)
and now Working Conference on MSR (2007-2009). We have
analyzed the papers that contained any experimental analy
of software projects for their potentiality of being replicated.
In this regard, three main issues have been addressed: i) the
public availability of the data used as case study. ii) the public
availability of the processed dataset used by researchers and
the public availability of the tools and scripts. A total number of
171 papers have been analyzed from the six workshops/working
conferences up to date. Results show that MSR authors use
in general publicly available data sources, mainly from free
software repositories, but that the amount of publicly available
processed datasets is very low. Regarding tools and scripts, for
jority of papers we have not been able to find any tool,
even for papers where the authors explicitly state that they have
built one. Lessons learned from the experience of reviewing the
whole MSR literature and some potential solutions to lower the
barriers of replicability are finally presented and discussed.

eywords-replication, tools, public datasets, mining software
repositories

.urj N msr2010.

INTRODUCTION

positories (MSR) has become a fun-

@gsye.urjc.es

Among these thre may encounter: lack of independent
validation of the presented results; changes in practices, tools
or methodologies; or generalization of knowledge although
a limited amount of case studies have been performed.

A simple taxonomy of replication studies provides us with
WO main groups: e replications and conceptual replica-
tions. The former ones are those in “which the procedures
of an experiment are followed as closely as possible to
determine whether the same results can be obtained”, while
the latter ones are those “one in which the same research
question or hypothesis is evaluated by using a different
experimental procedure, i.c. many or all of the variables
described above are changed.” [2]. In this paper, we will
target exact replications as the requirements that have to be
met to perform an exact replication are more severe, and in

eneral make a conceptual replication feasible.

We are focusing i this paper on potential replication as
we have actually not replicated any of the studies presented
in the papers under review. Our aim in this sense is more
humble: we want to check if the necessary conditions that
make a replication possible are met.

The rest of the paper is structured as follows: in the next
section, the method used for this study is presented. Then
some general remarks on the MSR conference are given,

Robles, MSR'10
Studied 171 papers

Only 2 were "replication
friendly”

Boa architecture

Boa Language

I
I
! B 4 Query Program
MapReduce' ' e
I --

\

Domain-specific
Types/Functions
_-v Compile

\
¥

Replicator

]
|
|
|
|
|
-
|
|
Query Plan 1 Caching Translator
1
|
|
|
|
1
|
|
|
|

Domain-specific
Types/Functions

y

Execute on
Hadoop Cluster

}

Query Result

Local Cache

! Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa's Data Infrastructure

Design goals

m) Easy to use
ms) Scalable and efficient

me) Reproducible research results

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

Ep: Project = input;

Erates: output mean[string] of int;
Eexists (i: int; lowercase (p.programming languages[i]) == "Jjava")
: foreach (j: int; p.code_ repositories[j].kind == RepositoryKind.SVN)

foreach (k: int; def(p.code_repositories[]].revisions[k]))

rates[p.id] << len(p.code repositories[]].revisions[k].files);

Abstracts details of how to mine software repositories

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

Project

id : string

name : string

description : string

homepage url : string
programming_languages : array of string
licenses : array of string
maintainers : array of Person

code repositories : array of CodeRepository

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

CodeRepository

url
kind

revisions

Revision
id : int
committer : Person
commit_date : time
log : string

fles : array of File

: string
: RepositoryKind

: array of Revision

File

name : string
kind : FileKind

change : ChangeKind

Domain-specific functions

http://boa.cs.iastate.edu/docs/dsl-functions.php

hanlletype := function (rev: Revision, ext: string) : bool {
exists (i: int; matches (format(\.%s$, ext), rev.files[i] .name))
return true;

return false;

Mines a revision to see if it contains any files of the type specified.

Domain-specific functions

http://boa.cs.iastate.edu/docs/dsl-functions.php

1sfixingrevision := function (log: string) : bool {

: if (matches(\s+fix(es|ing|ed)?\s+ , log)) return true;
if (matches(’ (bug|issue) (s)?[\s]+(#)?\s*[0-9]+ , log)) return true;
if (matches((bug|issue)\s+id(s)?\s*=\s*[0-9]+ , log)) return true;
return false;

Mines a revision log to see if it fixed a bug.

User-defined functions

http://boa.cs.iastate.edu/docs/user-functions.php

Eld := function (a1: t1’ ceepoa@ bt : {

. # body

[return ... ;]

® Allows for complex algorithms and code re-use

® Users can provide their own mining algorithms

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

pP: Project = input;

rates: output mean[string] of int;

exists (i: int; lowercase (p.programming languages[i]) == "java")
foreach (j: int; p.code_ repositories[j].kind == RepositoryKind.SVN)
foreach (k: int; def(p.code_repositories[]].revisions[k]))

rates[p.id] << len(p.code repositories[]].revisions[k].files);

® foreach, exists, ifall

® Bounds are inferred from the conditional

Output and aggregation

http://boa.cs.iastate.edu/docs/aggregators.php

Ep: Project = input;

Erates: output mean[string] of int;

Eexists (i: int; lowercase (p.programming languages[i]) == "Jjava")
: foreach (j: int; p.code repositories[j].kind == RepositoryKind.SVN)
foreach (k: int; def(p.code_repositories[]].revisions[k]))

rates[p.id] << len(p.code_repositories[j].revisions[k].files);

® Output can be indexed

® Output defined in terms of predefined data aggregators

O sum, set, mean, maximum, minimum, etc

® Values sent to output aggregation variables

Design goals

m) Easyto use
=) Scalable and efficient

me) Reproducible research results

Let's see 1t In action!

<<demo>>

Why are we waiting for results?

Program is analyzing...

Let's check the results!

<<demo>>

Efficient execution

100

Time (seconds)

Scalability of input size

100,000

-
)
~
=
[=]
x
B
2
S
Y
-
=
I
-
[=]
—_

Design goals

m) Easyto use
ms) Scalable and efficient

=) Reproducible research results

Controlled Experiment

® Published artifacts (on Boa website)
O Boa source code

O Dataset used (timestamp of data)
O Results file

Post-doc
PhD
PhD
PhD
MS
MS
MS

BS

[\ e R R A e 4)
DW= N BN A

1
3
1
2
4
2
2
2

Fig. 16. Study results. All times given in minutes.

Related Works

SOU rCe rer [Linstead et al. Data Mining Know. Disc.'09]
e SQL database on 18k projects

Kenyon evan et al. EseciFseos
e (Centralized database of metadata and source code

P RO M IS E [Boetticher, Menzies, Ostrand 2007]

e Online data repository for SE datasets
e Boa provides raw, un-processed data

Boa provides better scalability

Related Works

Sawzal I [Pike et al. Sci.Prog.'05]

e Similar syntax to Boa
e Abstracts details of the MapReduce runtime

Plg Latln [Olston et al. SIGMOD'08]
e Declarative syntax, similar to SQL

D ryad LI N Q [Yu et al. OSDI'08]

e Syntax based on .Net's LINQ
e Compiles to Dryad framework, a DAG of processes

None provide direct support
for mining software repositories

Ongoing work

cvs A
Google Code

bzr GitHub

Launchpad

Infrastructure

improvements Other

artifacts

Language
abstractions

Recent Work

e Support for mining source code
o Down to expression level

e Currently for Java

o Over 23k projects, with full history
o Over 14 Billion AST nodes

Conclusions

e Domain-specific language and infrastructure
for software repository mining

o Easy to use
o Efficient and scalable

o Allows reproducing prior results

http://boa.cs.iastate.edu/request/

